Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
1.
Dent Mater J ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38644215

RESUMO

This study aimed to evaluate the effects of different resin-coating technique strategies and dual-cure resin luting materials on proximal marginal adaptation and the microtensile bond strengths (µTBSs) of CAD/CAM hybrid ceramic inlays. Extracted human molars were classified into four groups, depending on the coating technique: No coating (None), single coating (1-coating), double coating (2-coating), and flowable resin-coating (Combination). The inlays were bonded with one of the three materials: Panavia V5 (V5), Rely X Ultimate (RXU), and Calibra Ceram (CC). The differences with regard to adaptation were not significant. In the case of µTBS data for V5, no significant differences were observed, whereas for RXU, µTBS values for Combination statistically exceeded those for None and 1-coating. For CC, µTBS values for Combination statistically exceeded those for None, 1-coating, and 2-coating. The coating techniques did not influence the adaptation but influenced the bond strength, and Combination performed the best.

2.
Cell Calcium ; 120: 102885, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38642428

RESUMO

When activated by increase in intracellular Ca2+, anoctamins (TMEM16 proteins) operate as phospholipid scramblases and as ion channels. Anoctamin 1 (ANO1) is the Ca2+-activated epithelial anion-selective channel that is coexpressed together with the abundant scramblase ANO6 and additional intracellular anoctamins. In salivary and pancreatic glands, ANO1 is tightly packed in the apical membrane and secretes Cl-. Epithelia of airways and gut use cystic fibrosis transmembrane conductance regulator (CFTR) as an apical Cl- exit pathway while ANO1 supports Cl- secretion mainly by facilitating activation of luminal CFTR and basolateral K+ channels. Under healthy conditions ANO1 modulates intracellular Ca2+ signals by tethering the endoplasmic reticulum, and except of glands its direct secretory contribution as Cl- channel might be small, compared to CFTR. In the kidneys ANO1 supports proximal tubular acid secretion and protein reabsorption and probably helps to excrete HCO3-in the collecting duct epithelium. However, under pathological conditions as in polycystic kidney disease, ANO1 is strongly upregulated and may cause enhanced proliferation and cyst growth. Under pathological condition, ANO1 and ANO6 are upregulated and operate as secretory channel/phospholipid scramblases, partly by supporting Ca2+-dependent processes. Much less is known about the role of other epithelial anoctamins whose potential functions are discussed in this review.

3.
Cell Calcium ; 120: 102888, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38657371

RESUMO

Plasma membrane localized anoctamin 1, 2 and 6 (TMEM16A, B, F) have been examined in great detail with respect to structure and function, but much less is known about the other seven intracellular members of this exciting family of proteins. This is probably due to their limited accessibility in intracellular membranous compartments, such as the endoplasmic reticulum (ER) or endosomes. However, these so-called intracellular anoctamins are also found in the plasma membrane (PM) which adds to the confusion regarding their cellular role. Probably all intracellular anoctamins except of ANO8 operate as intracellular phospholipid (PL) scramblases, allowing for Ca2+-activated, passive transport of phospholipids like phosphatidylserine between both membrane leaflets. Probably all of them also conduct ions, which is probably part of their physiological function. In this brief overview, we summarize key findings on the biological functions of ANO3, 4, 5, 7, 8, 9 and 10 (TMEM16C, D, E, G, H, J, K) that are gradually coming to light. Compartmentalized regulation of intracellular Ca2+ signals, tethering of the ER to specific PM contact sites, and control of intracellular vesicular trafficking appear to be some of the functions of intracellular anoctamins, while loss of function and abnormal expression are the cause for various diseases.

4.
Sci Rep ; 14(1): 1464, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233410

RESUMO

The Ca2+ activated Cl- channel TMEM16A (anoctamin 1; ANO1) is expressed in secretory epithelial cells of airways and intestine. Previous studies provided evidence for a role of ANO1 in mucus secretion. In the present study we investigated the effects of the two ANO1-inhibitors niclosamide (Niclo) and benzbromarone (Benz) in vitro and in vivo in mouse models for cystic fibrosis (CF) and asthma. In human CF airway epithelial cells (CFBE), Ca2+ increase and activation of ANO1 by adenosine triphosphate (ATP) or ionomycin was strongly inhibited by 200 nM Niclo and 1 µM Benz. In asthmatic mice airway mucus secretion was inhibited by intratracheal instillation of Niclo or Benz. In homozygous F508del-cftr mice, intestinal mucus secretion and infiltration by CD45-positive cells was inhibited by intraperitoneal injection of Niclo (13 mg/kg/day for 7 days). In homozygous F508del-cftr rats intestinal mucus secretion was inhibited by oral application of Benz (5 mg/kg/day for 60 days). Taken together, well tolerated therapeutic concentrations of niclosamide and benzbromarone corresponding to plasma levels of treated patients, inhibit ANO1 and intracellular Ca2+ signals and may therefore be useful in inhibiting mucus hypersecretion and mucus obstruction in airways and intestine of patients suffering from asthma and CF, respectively.


Assuntos
Asma , Fibrose Cística , Humanos , Camundongos , Ratos , Animais , Niclosamida/farmacologia , Benzobromarona/farmacologia , Benzobromarona/uso terapêutico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/uso terapêutico , Fibrose Cística/tratamento farmacológico , Anoctamina-1 , Muco , Intestinos
5.
Pflugers Arch ; 476(2): 211-227, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37979051

RESUMO

Inflammatory airway diseases like cystic fibrosis, asthma and COVID-19 are characterized by high levels of pulmonary cytokines. Two well-established antiparasitic drugs, niclosamide and ivermectin, are intensively discussed for the treatment of viral inflammatory airway infections. Here, we examined these repurposed drugs with respect to their anti-inflammatory effects in airways in vivo and in vitro. Niclosamide reduced mucus content, eosinophilic infiltration and cell death in asthmatic mouse lungs in vivo and inhibited release of interleukins in the two differentiated airway epithelial cell lines CFBE and BCi-NS1.1 in vitro. Cytokine release was also inhibited by the knockdown of the Ca2+-activated Cl- channel anoctamin 1 (ANO1, TMEM16A) and the phospholipid scramblase anoctamin 6 (ANO6, TMEM16F), which have previously been shown to affect intracellular Ca2+ levels near the plasma membrane and to facilitate exocytosis. At concentrations around 200 nM, niclosamide inhibited inflammation, lowered intracellular Ca2+, acidified cytosolic pH and blocked activation of ANO1 and ANO6. It is suggested that niclosamide brings about its anti-inflammatory effects at least in part by inhibiting ANO1 and ANO6, and by lowering intracellular Ca2+ levels. In contrast to niclosamide, 1 µM ivermectin did not exert any of the effects described for niclosamide. The present data suggest niclosamide as an effective anti-inflammatory treatment in CF, asthma, and COVID-19, in addition to its previously reported antiviral effects. It has an advantageous concentration-response relationship and is known to be well tolerated.


Assuntos
Asma , COVID-19 , Camundongos , Animais , Anoctamina-1/metabolismo , Ivermectina/farmacologia , Ivermectina/uso terapêutico , Niclosamida/farmacologia , Niclosamida/uso terapêutico , Anoctaminas/metabolismo , Pulmão/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Cálcio/metabolismo , Inflamação/tratamento farmacológico , Anti-Inflamatórios , Canais de Cloreto/metabolismo
6.
Brain ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38079528

RESUMO

Anoctamin 3 (ANO3) belongs to a family of transmembrane proteins that form phospholipid scramblases and ion channels. A large number of ANO3 variants were identified as the cause of craniocervical dystonia, but the underlying pathogenic mechanisms remain obscure. It was suggested that ANO3 variants may dysregulate intracellular Ca2+ signalling, as variants in other Ca2+ regulating proteins like hippocalcin were also identified as a cause of dystonia. In this study, we conducted a comprehensive evaluation of the clinical, radiological, and molecular characteristics of four individuals from four families who carried heterozygous variants in ANO3. The median age at follow-up was 6.6 years (ranging from 3.8 to 8.7 years). Three individuals presented with hypotonia and motor developmental delay. Two patients exhibited generalized progressive dystonia, while one patient presented with paroxysmal dystonia. Additionally, another patient exhibited early dyskinetic encephalopathy. One patient underwent bipallidal deep brain stimulation (DBS) and showed a mild but noteworthy response, while another patient is currently being considered for DBS treatment. Neuroimaging analysis of brain MRI studies did not reveal any specific abnormalities. The molecular spectrum included two novel ANO3 variants (V561L and S116L) and two previously reported ANO3 variants (A599D and S651N). As anoctamins are suggested to affect intracellular Ca2+ signals, we compared Ca2+ signalling and activation of ion channels in cells expressing wild type ANO3 and cells expressing ANO variants. Novel V561L and S116L variants were compared with previously reported A599D and S651N variants and with wtANO3 expressed in fibroblasts isolated from patients or when overexpressed in HEK293 cells. We identified ANO3 as a Ca2+-activated phospholipid scramblase that also conducts ions. Impaired Ca2+ signalling and compromised activation of Ca2+ dependent K+ channels were detected in cells expressing ANO3 variants. In the brain striatal cells of affected patients, impaired activation of KCa3.1 channels due to compromised Ca2+ signals may lead to depolarized membrane voltage and neuronal hyperexcitability and may also lead to reduced cellular viability, as shown in the present study. In conclusion, our study reveals the association between ANO3 variants and paroxysmal dystonia, representing the first reported link between these variants and this specific dystonic phenotype. We demonstrate that ANO3 functions as a Ca2+-activated phospholipid scramblase and ion channel; cells expressing ANO3 variants exhibit impaired Ca2+ signalling and compromised activation of Ca2+-dependent K+ channels. These findings provide a mechanism for the observed clinical manifestations and highlight the importance of ANO3 for neuronal excitability and cellular viability.

7.
Diagnostics (Basel) ; 13(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37892078

RESUMO

This in vitro study aimed to investigate the diagnostic potential of short-wave infrared transillumination (SWIRT) at 1050, 1200 and 1300 nm for the detection of proximal caries in molars and premolars. It was compared to the diagnostic performance of bitewing radiography (BWR) and micro-computed tomography (µCT) as the reference standard. 250 sound or decayed proximal surfaces of permanent posterior extracted teeth were examined using (1) SWIRT at 1050, 1200 and 1300 nm with two camera systems of different resolutions, (2) BWR and (3) µCT. Thresholds were defined for both test methods and the reference standard for caries in general, enamel caries and dentin caries. All images were assessed by two examiners twice, at an interval of two weeks. SWIRT at wavelengths of 1050, 1200 and 1300 nm achieved sensitivity values more than 2.5 times higher than BWR (enamel caries 3.2-4.4 times; dentin caries 3.25-4.25 times) for the detection of proximal caries. Sensitivity values of SWIRT improved with the higher wavelength. No significant difference was found in diagnostic quality between the two camera systems. SWIRT at 1300 nm imaged proximal enamel caries with the highest accuracy, while the physical optimum for transillumination in dentin was located at a lower wavelength (<1000 nm).

8.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686084

RESUMO

The Cl--transporting proteins CFTR, SLC26A9, and anoctamin (ANO1; ANO6) appear to have more in common than initially suspected, as they all participate in the pathogenic process and clinical outcomes of airway and renal diseases. In the present review, we will therefore concentrate on recent findings concerning electrolyte transport in the airways and kidneys, and the role of CFTR, SLC26A9, and the anoctamins ANO1 and ANO6. Special emphasis will be placed on cystic fibrosis and asthma, as well as renal alkalosis and polycystic kidney disease. In essence, we will summarize recent evidence indicating that CFTR is the only relevant secretory Cl- channel in airways under basal (nonstimulated) conditions and after stimulation by secretagogues. Information is provided on the expressions of ANO1 and ANO6, which are important for the correct expression and function of CFTR. In addition, there is evidence that the Cl- transporter SLC26A9 expressed in the airways may have a reabsorptive rather than a Cl--secretory function. In the renal collecting ducts, bicarbonate secretion occurs through a synergistic action of CFTR and the Cl-/HCO3- transporter SLC26A4 (pendrin), which is probably supported by ANO1. Finally, in autosomal dominant polycystic kidney disease (ADPKD), the secretory function of CFTR in renal cyst formation may have been overestimated, whereas ANO1 and ANO6 have now been shown to be crucial in ADPKD and therefore represent new pharmacological targets for the treatment of polycystic kidney disease.


Assuntos
Fibrose Cística , Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Humanos , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Anoctaminas , Proteínas de Membrana Transportadoras , Transportadores de Sulfato/genética , Antiporters
9.
Int J Mol Sci ; 24(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37762516

RESUMO

Studies in human colonic cell lines and murine intestine suggest the presence of a Ca2+-activated anion channel, presumably TMEM16a. Is there a potential for fluid secretion in patients with severe cystic fibrosis transmembrane conductance regulator (CFTR) mutations by activating this alternative pathway? Two-dimensional nondifferentiated colonoid-myofibroblast cocultures resembling transit amplifying/progenitor (TA/PE) cells, as well as differentiated monolayer (DM) cultures resembling near-surface cells, were established from both healthy controls (HLs) and patients with severe functional defects in the CFTR gene (PwCF). F508del mutant and CFTR knockout (null) mice ileal and colonic mucosa was also studied. HL TA/PE monolayers displayed a robust short-circuit current response (ΔIeq) to UTP (100 µM), forskolin (Fsk, 10 µM) and carbachol (CCH, 100 µM), while ΔIeq was much smaller in differentiated monolayers. The selective TMEM16a inhibitor Ani9 (up to 30 µM) did not alter the response to luminal UTP, significantly decreased Fsk-induced ΔIeq, and significantly increased CCH-induced ΔIeq in HL TA/PE colonoid monolayers. The PwCF TA/PE and the PwCF differentiated monolayers displayed negligible agonist-induced ΔIeq, without a significant effect of Ani9. When TMEM16a was localized in intracellular structures, a staining in the apical membrane was not detected. TMEM16a is highly expressed in human colonoid monolayers resembling transit amplifying cells of the colonic cryptal neck zone, from both HL and PwCF. While it may play a role in modulating agonist-induced CFTR-mediated anion currents, it is not localized in the apical membrane, and it has no function as an apical anion channel in cystic fibrosis (CF) and healthy human colonic epithelium.


Assuntos
Fibrose Cística , Animais , Humanos , Camundongos , Ânions , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Epitélio , Uridina Trifosfato
10.
Pflugers Arch ; 475(8): 995-1007, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37442855

RESUMO

The TMEM16A (ANO1) Cl- channel is activated by Ca2+ in a voltage-dependent manner. It is broadly expressed and was shown to be also present in renal proximal tubule (RPT). KCNQ1 is an entirely different K+ selective channel that forms the cardiac IKS potassium channel together with its ß-subunit KCNE1. Surprisingly, KCNE1 has been claimed to interact with TMEM16A, and to be required for activation of TMEM16A in mouse RPT. Interaction with KCNE1 was reported to switch TMEM16A from a Ca22+-dependent to a voltage-dependent ion channel. Here we demonstrate that KCNE1 is not expressed in mouse RPT. TMEM16A expressed in RPT is activated by angiotensin II and ATP in a KCNE1-independent manner. Coexpression of KCNE1 does not change TMEM16A to a voltage gated Cl- channel and Ca2+-dependent regulation of TMEM16A is fully maintained in the presence of KCNE1. While overexpressed KCNE1 slightly affects Ca2+-dependent regulation of TMEM16A, the data provide no evidence for KCNE1 being an auxiliary functional subunit for TMEM16A.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana , Animais , Camundongos , Coração , Canal de Potássio KCNQ1/genética , Túbulos Renais Proximais , Canais de Potássio , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética
11.
Glia ; 71(11): 2527-2540, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37431178

RESUMO

Gamma-aminobutyric acid (GABA), the principal inhibitory neurotransmitter in the brain, affects numerous immune cell functions. Microglia, the brain's resident innate immune cells, regulate GABA signaling through GABA receptors and express the complete GABAergic machinery for GABA synthesis, uptake, and release. Here, the use of primary microglial cell cultures and ex vivo brain tissue sections allowed for demonstrating that treatment with lipopolysaccharide (LPS) increased microglial GABA uptake as well as GABA transporter (GAT)-1 trafficking. This effect was not entirely abolished by treatment with GAT inhibitors (GAT-Is). Notably, LPS also induced microglial upregulation of bestrophin-1 (BEST-1), a Ca2+ -activated Cl- channel permeable to GABA. Combined administration of GAT-Is and a BEST-1 inhibitor completely abolished LPS-induced microglial GABA uptake. Interestingly, increased microglial GAT-1 membrane turnover via syntaxin 1A was detected in LPS-treated cultures after BEST-1 blockade. Altogether, these findings provided evidence for a novel mechanism through which LPS may trigger the inflammatory response by directly altering microglial GABA clearance and identified the GAT-1/BEST-1 interplay as a potential novel mechanism involved in brain inflammation.


Assuntos
Lipopolissacarídeos , Microglia , Microglia/metabolismo , Lipopolissacarídeos/farmacologia , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Bestrofinas/metabolismo , Ácido gama-Aminobutírico/metabolismo
12.
Front Physiol ; 14: 1157704, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234411

RESUMO

Cl- channels such as the Ca2+ activated Cl- channel TMEM16A and the Cl- permeable phospholipid scramblase TMEM16F may affect the intracellular Cl- concentration ([Cl-]i), which could act as an intracellular signal. Loss of airway expression of TMEM16A induced a massive expansion of the secretory cell population like goblet and club cells, causing differentiation into a secretory airway epithelium. Knockout of the Ca2+-activated Cl- channel TMEM16A or the phospholipid scramblase TMEM16F leads to mucus accumulation in intestinal goblet cells and airway secretory cells. We show that both TMEM16A and TMEM16F support exocytosis and release of exocytic vesicles, respectively. Lack of TMEM16A/F expression therefore causes inhibition of mucus secretion and leads to goblet cell metaplasia. The human basal epithelial cell line BCi-NS1.1 forms a highly differentiated mucociliated airway epithelium when grown in PneumaCult™ media under an air liquid interface. The present data suggest that mucociliary differentiation requires activation of Notch signaling, but not the function of TMEM16A. Taken together, TMEM16A/F are important for exocytosis, mucus secretion and formation of extracellular vesicles (exosomes or ectosomes) but the present data do no not support a functional role of TMEM16A/F in Notch-mediated differentiation of BCi-NS1.1 cells towards a secretory epithelium.

13.
Dent Mater ; 39(5): 513-521, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37031095

RESUMO

OBJECTIVES: To investigate the shrinkage-induced damage at the composite-tooth interface by finite element analysis (FEA) using the cohesive zone model (CZM). METHODS: Axisymmetric models of Class I restorations were created to illustrate the interfacial damage around composite resin restorations of different dimensions, with polymerization shrinkage modeled analogously to thermal shrinkage. The damage to the adhesive interface was determined using a CZM based on the fracture strength and fracture energy. To show the effects of damage, conventional models with perfectly bonded composite resin restorations were created as controls. RESULTS: The results indicated interfacial damage at the butt-joint cavosurface margin, dentinoenamel junction, and internal line angle. The percentage of damaged interfacial area was found to increase with decreasing diameter for restorations of the same height. For a given diameter, the damage was more severe for restorations of greater depth. The effects of the damage were further illustrated in the model with a restoration of 2-mm diameter and height. The interfacial damage occurred primarily at the internal line angle (83.3 % of all the damaged interfacial area), leading to local stress relief (from 18.3 MPa to 12.8 MPa), but also higher stress at the damage fronts. Greater local shrinkage was found in composites adjacent to the damage. SIGNIFICANCE: The damage mechanics-based CZM is an essential refinement of the FEA to predict interfacial damage and its implications. The extent of damage was found to be greater around restorations with smaller diameters and greater depths. The entire simulation is available via an open-source platform to facilitate further applications in adhesive dentistry.


Assuntos
Resinas Compostas , Restauração Dentária Permanente , Restauração Dentária Permanente/métodos , Teste de Materiais , Análise de Elementos Finitos , Polimerização
14.
Channels (Austin) ; 17(1): 2186434, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36866602

RESUMO

SLC26A9 is one out of 11 proteins that belong to the SLC26A family of anion transporters. Apart from expression in the gastrointestinal tract, SLC26A9 is also found in the respiratory system, in male tissues and in the skin. SLC26A9 has gained attention because of its modifier role in the gastrointestinal manifestation of cystic fibrosis (CF). SLC26A9 appears to have an impact on the extent of intestinal obstruction caused by meconium ileus. SLC26A9 supports duodenal bicarbonate secretion, but was assumed to provide a basal Cl- secretory pathway in airways. However, recent results show that basal airway Cl- secretion is due to cystic fibrosis conductance regulator (CFTR), while SLC26A9 may rather secrete HCO3-, thereby maintaining proper airway surface liquid (ASL) pH. Moreover, SLC26A9 does not secrete but probably supports reabsorption of fluid particularly in the alveolar space, which explains early death by neonatal distress in Slc26a9-knockout animals. While the novel SLC26A9 inhibitor S9-A13 helped to unmask the role of SLC26A9 in the airways, it also provided evidence for an additional role in acid secretion by gastric parietal cells. Here we discuss recent data on the function of SLC26A9 in airways and gut, and how S9-A13 may be useful in unraveling the physiological role of SLC26A9.


Assuntos
Antiporters , Intestinos , Sistema Respiratório , Transportadores de Sulfato , Animais , Transporte Biológico , Fibrose Cística , Transportadores de Sulfato/fisiologia , Antiporters/fisiologia
15.
J Cyst Fibros ; 22 Suppl 1: S17-S22, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36621373

RESUMO

With increased longevity of patients suffering from cystic fibrosis, and widespread lung transplantation facilities, the sequelae of defective CFTR in other organs than the airways come to the fore. This minireview highlights recent scientific progress in the understanding of CFTR function in the pancreas, the intestine and the kidney, and explores potential therapeutic strategies to combat defective CFTR function in these organs.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Humanos , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Intestinos , Rim , Pâncreas
16.
Pflugers Arch ; 475(2): 167-179, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36205782

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) anion channel and the epithelial Na+ channel (ENaC) play essential roles in transepithelial ion and fluid transport in numerous epithelial tissues. Inhibitors of both channels have been important tools for defining their physiological role in vitro. However, two commonly used CFTR inhibitors, CFTRinh-172 and GlyH-101, also inhibit non-CFTR anion channels, indicating they are not CFTR specific. However, the potential off-target effects of these inhibitors on epithelial cation channels has to date not been addressed. Here, we show that both CFTR blockers, at concentrations routinely employed by many researchers, caused a significant inhibition of store-operated calcium entry (SOCE) that was time-dependent, poorly reversible and independent of CFTR. Patch clamp experiments showed that both CFTRinh-172 and GlyH-101 caused a significant block of Orai1-mediated whole cell currents, establishing that they likely reduce SOCE via modulation of this Ca2+ release-activated Ca2+ (CRAC) channel. In addition to off-target effects on calcium channels, both inhibitors significantly reduced human αßγ-ENaC-mediated currents after heterologous expression in Xenopus oocytes, but had differential effects on δßγ-ENaC function. Molecular docking identified two putative binding sites in the extracellular domain of ENaC for both CFTR blockers. Together, our results indicate that caution is needed when using these two CFTR inhibitors to dissect the role of CFTR, and potentially ENaC, in physiological processes.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Canais Epiteliais de Sódio , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Simulação de Acoplamento Molecular , Cátions/metabolismo
17.
FASEB J ; 37(1): e22683, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36520003

RESUMO

SIGIRR (single immunoglobulin IL-1 related receptor), PKP3 (plakophilin 3), and TMEM16J (anoctamin 9), a putative calcium-activated ion channel and phospholipid scramblase, control the immune response and the extent of inflammation. Variants of SIGIRR/PKP3/TMEM16J lead to severe inflammatory diseases such as pneumonia, enterocolitis, and kidney graft rejection. Meta-analysis of genome-wide association studies identified TMEM16J-T604A as a promotor for chronic kidney disease (CKD), but the disease mechanism and function of TMEM16J remain unknown. Here, we demonstrate TMEM16J as a calcium-activated calcium-permeable channel, which is expressed in the endoplasmic reticulum (ER). TMEM16J controls the intracellular distribution of calcium, and inhibits intracellular receptor-mediated Ca2+ signals and Ca2+ -dependent activation of ion channels, but augments transcription and release of pro-inflammatory cytokines. Renal epithelial cells expressing the variant TMEM16J-T604A show enhanced calcium signals when compared to cells expressing wt-TMEM16J, and demonstrate spontaneous transcription and release of cytokines. This study identifies TMEM16J as an important regulator of intracellular Ca2+ signals, ion channel activity, and cytokine release. TMEM16J may therefore affect immune response in renal tissue and immune cells.


Assuntos
Cálcio , Estudo de Associação Genômica Ampla , Cálcio/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Canais de Cálcio/metabolismo , Receptores de Interleucina-1/genética , Citocinas , Sinalização do Cálcio/fisiologia
18.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293514

RESUMO

Individuals with cystic fibrosis (CF) suffer from severe respiratory disease due to a genetic defect in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which impairs airway epithelial ion and fluid secretion. New CFTR modulators that restore mutant CFTR function have been recently approved for a large group of people with CF (pwCF), but ~19% of pwCF cannot benefit from CFTR modulators Restoration of epithelial fluid secretion through non-CFTR pathways might be an effective treatment for all pwCF. Here, we developed a medium-throughput 384-well screening assay using nasal CF airway epithelial organoids, with the aim to repurpose FDA-approved drugs as modulators of non-CFTR-dependent epithelial fluid secretion. From a ~1400 FDA-approved drug library, we identified and validated 12 FDA-approved drugs that induced CFTR-independent fluid secretion. Among the hits were several cAMP-mediating drugs, including ß2-adrenergic agonists. The hits displayed no effects on chloride conductance measured in the Ussing chamber, and fluid secretion was not affected by TMEM16A, as demonstrated by knockout (KO) experiments in primary nasal epithelial cells. Altogether, our results demonstrate the use of primary nasal airway cells for medium-scale drug screening, target validation with a highly efficient protocol for generating CRISPR-Cas9 KO cells and identification of compounds which induce fluid secretion in a CFTR- and TMEM16A-indepent manner.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Organoides/metabolismo , Cloretos/metabolismo , Reposicionamento de Medicamentos , Células Epiteliais/metabolismo , Agonistas Adrenérgicos/metabolismo
19.
FASEB J ; 36(11): e22534, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36183361

RESUMO

The solute carrier 26 family member A9 (SLC26A9) is an epithelial anion transporter that is assumed to contribute to airway chloride secretion and surface hydration. Whether SLC26A9 or CFTR is responsible for airway Cl- transport under basal conditions is still unclear, due to the lack of a specific inhibitor for SLC26A9. In the present study, we report a novel potent and specific inhibitor for SLC26A9, identified by screening of a drug-like molecule library and subsequent chemical modifications. The most potent compound S9-A13 inhibited SLC26A9 with an IC50 of 90.9 ± 13.4 nM. S9-A13 did not inhibit other members of the SLC26 family and had no effects on Cl- channels such as CFTR, TMEM16A, or VRAC. S9-A13 inhibited SLC26A9 Cl- currents in cells that lack expression of CFTR. It also inhibited proton secretion by HGT-1 human gastric cells. In contrast, S9-A13 had minimal effects on ion transport in human airway epithelia and mouse trachea, despite clear expression of SLC26A9 in the apical membrane of ciliated cells. In both tissues, basal and stimulated Cl- secretion was due to CFTR, while acidification of airway surface liquid by S9-A13 suggests a role of SLC26A9 for airway bicarbonate secretion.


Assuntos
Cloretos , Regulador de Condutância Transmembrana em Fibrose Cística , Animais , Antiporters/metabolismo , Bicarbonatos/metabolismo , Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Prótons , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo
20.
BMC Oral Health ; 22(1): 331, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941677

RESUMO

BACKGROUND: The aim of this study was to evaluate the postbrushing tooth-whitening effect of toothpaste containing hydroxyapatite nanoparticles (nano-HAPs). The impact of the concentration on the whitening performance of nano-HAP toothpaste was also investigated. METHODS: Two concentrations of nano-HAP (10 wt% and 1 wt%) were incorporated in nonabrasive toothpastes. Forty bovine incisors were randomly assigned into four groups: 10 wt% nano-HAP, 1 wt% nano-HAP, toothpaste without nano-HAP as a negative control and water as a blank control. Each tooth was treated with the toothpaste three times and hydrodynamic shear force (HSF) once. The teeth surfaces were observed by SEM after each application. Tooth color (L*, a* and b* values) was measured by a spectrophotometer, and color changes (△E, △L, △a and △b values) were calculated. Two-way mixed ANOVA was performed to evaluate the influence of the concentration and repeated application on the tooth-whitening effect of nano-HAP. RESULTS: We found that nano-HAP-treated enamel exhibited higher L* values and lower a* and b* values than the control groups (P < 0.05). The 10 wt% nano-HAP group showed significantly higher △E values than the 1 wt% nano-HAP group (P < 0.05). After three applications, the △E mean value of the 10 wt% nano-HAP group was 4.47. The △E and △L values were slightly reduced after HSF (P < 0.05). For both nano-HAP groups, HAP single crystallites and agglomerates were identified, and their sizes grew with nano-HAP reapplication. CONCLUSIONS: In conclusion, nano-HAP toothpaste has a satisfying postbrushing whitening effect and good resistance to mechanical forces. The whitening effect seemed to be concentration-dependent.


Assuntos
Nanopartículas , Clareamento Dental , Dente , Animais , Bovinos , Durapatita/uso terapêutico , Humanos , Incisivo , Nanopartículas/uso terapêutico , Clareamento Dental/efeitos adversos , Cremes Dentais/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...